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ON T!E  CONCEPT OF 

STABILITY OF   INELASTIC SYSTEMS 

5,f D.  C. Drucker    and E    T»  Onat 

Abstract 

Simple models are employed to bring out the large anc1 im- 

portant differences between buckling in the plastic range and classical 

elastic instability. Static and kinetic criteria are compared and 

their inter-relation discussed. '!on-llnear behavior in particular 

is often found to be the key to the physically valid solution. The 

non-conse vative nature of plastic Reformation in itself or in com- 

bination with the non-linearity requires concepts not found in clas- 

sical approaches. Conversely, the classical linearized condition of 

neutral equilibrium is really not relevant in inelastic buckling. 

Plastic buc'-.ling loads are not uniquely defined but cover a range of 

values and are often more properly thought of as maximum loads for 

some reasonable Initial imperfection in geometry or dynamic disturbance. 

The models indicate that basically the same information is 

obtained frorr essentially ntetic rysteir.s by assuming initial imperfec- 

tion in geometric form a; by assuming dynamic disturbances.  One 

approach complements the other and both are helpful in obtaining an 

understanding of the physical phenomena. 

Professor of Engineering, Brown University, 
2 
F.B, Jewett Fellow in Aoplied Mat',ematics, 3rovn University, 
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Introduction 

In the analysis of structures, as in most branches of 

engineering and science, problems are solved by simplifying then 

enormously. The geometry of the structure, the material of which 

it is composed, and the loads applied are all strongly Idealized. 

A rather extreme example is a riveted truss which is often analyzed 

as pin-connected and as though all axial forces in the members were 

applied along the assumed straight centerline of each and were uni- 

formly distributed over the cross-section. Justification cf any 

idealization requires an analysis of the real system and an inter- 

pretation of tse results.  Should reasonable deviations produce large 

changes in the result the idealization is not permissible.  Clearly, 

in the example just cited the truss members will have appreciable 

end moments so that the stress will not be distributed uniformly. 

Largo stress concentrations will occur at rivet holes and other 

discontinuities.  In a strict sense the idealizations are entirely 

in error. Fro1 the practical point of view, however, if allowable 

stresses are based on experience as codified in engineering specifica- 

tions, it will often bo "ound that the sirplifled analysis is adequate, 

The basic elastic bucMing problem of the Euler strut is 

irore relevant to the present discussion.  The assumptions made are 

that the column is perfectly straight, that the load is static and 

is applied along the centcrlino, and that the Material is homogeneous, 

linearly elastic, and free of initial stress.  Computation of critical 

load is made with a linearized instead of exact expression for curva- 

ture while a condition of neutral equilibrium is sought under constant 
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load. Neutral signifies that equilibrium is possible in neighboring 

deformed positions as well as in the ideal configuration. An equiva- 

lent approach is to compute the static force or to compute the impulse 

needed to displace the strut laterally and then to define the critical 

load as the load at which zero disturbance is needed 

The terms instability and buckling load can thus be given 

precise meaning for an ideal Euler elastic strut without any con- 

sideration of the behavior of real columns. Howevr, an engineer 

of skeptical turn of mind encountering such a calculation for the 

first tine could well be excused if he ignored the results completely. 

Indeed they were generally ignored until aircraft sections emphasized 

their significance. There is no obvious or intuitive reason for 

accepting the validity of the idealizations. Rolled and extruded 

sections have appreciable Initial stress and are inperfect in slape 

and form. Loads are not absolutely axial nor are they ordinarily 

constant in magnitude. 

Fortunately, in this simple problem, idealizations and 

imperfections can be studied analytically. When ^uler solved the 

problem originally, he used the exact expression for curvature so 

that its linearization is known to be permissible. Also, the eccen- 

trically loaded, imperfect column can be treated. The usefulness of 

the Euler critical load computation lies in the fact that the calcula- 

tions based on real columns 3how the critical load to be a reasonable 

limiting load as Ions as the stresses induced are below the elastic 

limit and the imperfections are small, Fig. 1. 
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Similar types of calculations have proved equally successful 

for other structural elements where small deviations from the ideal- 

ized condition also do not produce large differences in behavior. In 

a way, this successful analysis of linearized, idealized^and simpli- 

fied systems was unfortunate. It seems to have led to the idea that 

the classical linearized theory with its static criterion of neutral 

equilibrium solved the real problem. As an actual imperfect system 

is so troublesome, even in the elastic range, it is easy to see how 

such a situation could develop. When low values were obtained experi- 

mentally for the buckling loads of cylindrical and spherical shells 

the warning was not ta1 en seriously in general. Donne11 did attribute 

the discrepancy to initial imperfection but Karman and Tsien* explained 

the result with a largo deflection theory, Fig. 2. Although the two 

approaches are comparable in some ways, it was the bucvJing computa- 

tion which had the more popular appeal. 

The picture be.i;an to change when Shanley** introduced the 

concept of considering the loading proems itself by returning to the 

strut problem and following what happens as the load is increased and 

the elastic limit is exceeded. He demonstrated conclusively that the 

classical buckling approach, which gives the critical load P^- is not 

appropriate for the plastic range. Perhaps, however, too much atten- 

tion was paid to the remarkable proof that an initially perfect 

column could start to bend at the tangent modulus load, Pp. The 

*Th. V. Ka'rman and H. Tsien, Jour.Aero.Sci. Vol 7, PP *+3-50, 1939 . 

**F.R. Shanley, Jour.Aero.Sci. Vol 13, p. 6?8, 19^6 
Jour.Aoro.Sci. Vol iff, p. 26l, 19^7 
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buckling aspects of Shanley's problem seemed to overshadow the max- 

imum load computation, or more generally, his ioaoUdef lection relation,_ 

possibly because the spread between P_ and FV, is soL small for a column. 

As already mentioned, initial imperfections are always present so that 

basically the question of practical importance is how the deflection 

grows with load and what is the maximum load, P*,, which can be carried. 

Pearson* contributed to the overall picture by proving that Shanley's 

load-deflection curve for an initially straight column is the limiting 

load-deflection curve for an imperfect column as the deviation from 

straightncss approaches i:cro, Fig. 3. 

Onat and Drucker** added the more elaborate example of a 

crucifyornf^cclumr~InTSer"plaTtie range which fails by twisting, Fig. M-. 

This plate problem solved by small deflection theory demonstrated the 

need to take into account what might be termed small but finite de- 

formations which occur as the loading proceeds if extremely small 

Initial imperfections arc present. Here the spread betv/een P;vj and P^ 

is large and of real practical significance similar in a \ iy  to the 

shell problem of Fig. 2. 

Zicgler*** focussed attention on dynamic loading or dynamic 

disturbr~neo superposed on static loading and pointed up the shortcomings 

•C.E. Pearson, Jour.Aero.Sci. Vol 17, p. ^17, 1950 

**E.T. Onat and D.C. Drucker, Jour.Aero.Sci. Vol 20, pp.l8l-l86, 1953 

***H. Ziegler, Ingenieur-Archiv, Vol 20. pp.if9-56, 1952 
~Wr»Ziegler, Zeitschrlft fur angewa'ndte Hathematik and Physik, Vol *+, 

Fasc. 2 and 3, 1953 ; 
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of classical theory. A kinetic criterion of instability can be 

employed to obtain correct answers for systems with perfect geometry. 

The necessity or convenience of a kinetic criterion for essentially 

static problems, however, remains to be considered. 

To summarize these introductory remarks, the real problem 

of instability involves: 

1) imperfection of geometry of structure 

2) imperfection of loading 

3) dynamic disturbances 

h)  inhomogeneity, residual stresses, and similar 
ever-present imperfections 

In general calculations must be made taking into account the effect 

of small but finite deformations and- possibly large deformation as 

well in a few cases.  On the other hand, classical linearized theory 

for the idealized system computes instability for infinitesimal de- 

formation or dynamic distrubance under constant load.  If the loading 

is conservative and the system is linearly elastic, such an analysis 

is often satisfactory. The same critical load is obtained for both 

infinitesimal deformation and dynamic disturbance.  As inelastic 

°ystens are both non-linear and non-conservative (path dependent), it 

is not reasonable to expect the classical linear type of theory to 

produce significant results. 

In the Shanley example Fig. 3» it is non-linearity which is 

responsible for deviation from straightness at the tangent modulus 

load, non-conservatism which produces P«. Non-linearity is so promin- 

ent in.the elastic-plastic range because a relatively small amount of 

deformation produces the change from elastic response with its high 
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modulus of elasticity to the plastic response at low modulus. 

The meaning of instability is itself often obscure and a 

matter of new definition. Loads between P_ and P^, Fig. 3 are stable 

in one sense unstable in mother. Dynamic disturbances and geometric 

imperfections must be considered and the history of the deformation 

must be followed. 

» 
» i 
i 

11 
* » 1 

% 
1 . i 

I 1 
•6   s 

Non-Linearity, Static Analysis 

As stated plastic action is always both non-linear and non- 

conservative.  The first i odel to be considered, Fig. 5, has both 

characteristics but it is non-linearity which provides the Interesting 

features of its behavior.  Rod CA is ri^id, the pin at 0 is friction- 

less and the spring attached at A has an elastic and a plastic range 

of force F shown schematically by the full line in Fig. 6.  Small 

displacements only V/ill be analyzed so that LO replaces L sin 0, 

L cos 0 is ta!:en as L for the lever arm of F, and the position of A 
p 

belov; its maximum possible height is approximated by LO /2.  Upon 

unloading, the force-displacement curve is straight and parallel to 

the original elastic line as shovn. The actual force displacement 

curve v/ill be replacel by the broken line segments BC, CD, DD' , etc. 

for convenience of description and of al^ebrnic manipulation. 

The mathematical expression of the simplified force-displace- 

ment relation depends uoon wnethor the material is behaving elastical- 

ly or plastically and is 

. 

dF = k LdG (1) 
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dF  = kLd© 

Expression (1) applies for FdF > 0 and ©>0. on first loading or more 

generally FdF > 0 and I F I s Fy and greater than any value reached 

previously. Expression (2) applied for FdF < 0 or for I F I <F or any 

previously attained value. 

Suppose the t t'.ie spring is so adjusted that F = 0 vhen 

0=0. The bar OA vill then be in equilibrium in the vertical posi- 

tion for all values of load, P.  The question of the stability of the 

equilibrium is not as trivial as might at first appear.  If the usual 

static criterion is employed, OA is rotated through a very small 
2 

angle © and the v/orl' done by r, PL© /2 is compared v.ith the energy 

stored by the spring, FL©/2 where F = kL©. Equating the two terms 

leads to the critical load 

PK = kL (3) 

The Shanley concept of increasing P as © is introduced does not change 

the result a*- all.  It is tie stability of deflected positions which 

is the ! ey to the physically significant behavior of the system. 

Equilibrium requires PL© = FL or 

F = F© CO 

For the elastic ran.^o, ©<©-,, ?  -  kL© and P = kL. When © reaches or 

exceeds ©x, F = v.   + -^LC© - ©1) where F --  kL©^ 

• 
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F© = kL©! + ktL(© - ©1) = (k - kt)LOx + ktL© 

= kL© - (k - kt) L (0 - ©,) 

as depicted in Fig. 7 by lines ©0 = 0. 

If the spring is so adjusted that F = 0 at © = ©0, 

F = kL(© - ©0) = P© 

and 

-A 1 kL 1-f 
(6) 

in the elastic rango,  beyond Fy, where as shown dashed in Fig. 7a 

Pk   ©0+©! 

F r kLPj, + ktL (© - 0o - ©x) = PO 

so that to maintain equilibrium F would have to decrease as © in- 

creases. The maximum value of P therefore is given by 

M 
K 

ei 
Q~T©7 (7) 

•• • 

m 

with the restriction PM >  )^L. 

In a sense Figs. 7(a) and 7(b) vhich differ only in 

hori-,ontr.l scile ore a graphical representation of the two extreme 

possibilities.  If ©^ i^ lar;',e comnored v/ith probable initial rind 

subsequent deflections P = t'L is a valid buckling load and will be 

found errnerinor.tolly.  On the contrary, if ©^ is very small compared 

with probable initial doTlection or equivalent eccentricity or 

>v 
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inclination of load P, the experimentally determined critical load 

or the one found in practice will be close to k.L. When kt<<k, 

the difference between the extremes is very large. To this extent, 

the physical phenomenon may be said to be strongly dependent upon 

initial imperfection.  In particular cases as for the cruciform,Fig. *+, 

it may turn out that the maximum load is bounded quite closely in 

practice. 

If the model is taken as important in itself instead of 

simply a schematic illustration it is interesting to see how the 

extreme cases arise. Fy--= kLO^ may be rewritten as 

F„  6, 
el = • rf." r c8) 

where 5e is the maximum elastic elongation of the spring. A long soft 

spring will provide a bQ  of several inches and P, will bo obtained. 

Short snubbing bars or wires, on the other hand, permit a 6 of the 

order of thousandths of an inch and unavoidable measures in the bar 

and the loading will give an effective 0o many times 0,.  Pj.- will 

then tend to be close to k^L. 

- Although Fig«_ 6 shov;s the unloading behavior to be non- 

conservative, nothing in this section involved unloading so that a 

non-linear clastic material would exhibit exactly the same effects, 

Non-Linearity^ Kinetic Analysis 

The model of Fig. 5 will now be considered from the alterna- 

tive kinetic point of view.  Now the question to be asked is whether 

a dynamic disturbance applied to a perfectly aligned system in 
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equilibrium produces bounded or unbounded oscillations within the frame- 

work of small deflection theory. The previous static analysis makes 

it quite clear that the answer will again depend upon the magnitude 

of- the disturbance just as the size of ©Q was significant. 

Suppose that under constant load P, with 0=0, the bar 

OA is Riven an initial velocity ©0. Conservation of energy gives, 

for smell ©, 

I(Q2 - ©0
2) -, PL©2/2 - kL©2/2 (9) 

for © < ©j 

and 

I(©2  - ©0
2)   = PL©2/2   -   [ kLQ^/2  + kLO-L   (© - ©-, ) 

+ ktL  (© - ©x)
2/2 ] (10) 

for © > ©, and ©20.  I is the moment of inertia of the bar OA about 

0. 

The system is unstable, that is motion in the initial 

direction will not stop, ©>0, if the energy stored and dissipated 

in the spring can not be as large as 

I©0
2 + PL©2/2 (11) 

Obviously, from (9.) and (10) ? <Pv = kL is a requirement for stability. 

At P = PK, the slightest 0o will cause collapse, at P >P^ the system 

runs away quickly. A plot of 8 is © is most convenient for exhibiting 

such properties, Fig. 8. 

" 9 If P <k^L, there is no 0O which can not be absorbed in 

accordance with small deflection Equation (10). The system is 
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therefore stable for F< k.L and the 0, 0 diagram is composed of 

portions of ellipses, Fig. 9. For ktL < P < kL there will be levels 

of initial disturbance above which the system will not recover. Below 

these values of 0o the bar will come to rest and return.  It is clear 

on physical grounds that on the return motion the system will again 

stop and oscillate back and forth. Unless the system collapses on 

the first try it is stable, Fig. 10.  It is for this reason that on 

this an^ analogous cases whon tho external forces applied are con- 

servative, static and kinetic analyses arc equivalent. 

Fig. 10 also s'ows the effect of combinations of nitial 

velocity and initial displacement. 

Non-Conservative Aspects 

Fig. 11 shov.-s t.hc model employed by Duberg and Wilder*, fol- 

lowing ciosely the model and concept of Stanley, to investigate tho 

effect of initial imperfection in columns.  DLGR is rigid and G is 

constrained tc more' vertically only by mean- of a frictionless guide 

so that tho system has two degrees of freedom y, 6 .  L and P. rest 

on two identical srort brrs cf work-hardening material whose force- 

displacement diagrams are each idealized as two straight lines, Fig. 

12.  If a bar has been loaded to B and loading continues i 

F = FR + kt (6- 6B) (12) 

while if load is remov .-•' 

*J.E. Duberg and "'.'.'. '"il'.er, Jour.A ro.r.ci. Vol 17, ?,?23, 1950. 
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F=FQ-k(6B-6) 

The static analysis is well known and basically has rlroady 

been described in Fig. 3 i'herc 6 should be replaced by ©t  The load 

rotation relation for the simplified model is given in Fig. 13. As 

initially imperfect system, 6 = 0Q, will rotate more as load is 

applied r.nd will have deviated appreciably from the vertical by the 

time the tangent modulus load, P-r., Fig. lW, is reached. 

PT __ (1*0 

A ncrfect systor.- can deviate from the upright position at P^. and the 

slope of the P, 0 line w*ll be progressively flatter the larger the 

value of P at which rotation is permitted (sec line segments between 

PT and PK of Fig. 3). At the reduced modulus load P = PK, Fig. 1*+, 

the slope would be zero 

ktb" 2k 
PK = ~*L  kpTc (15) 

-4. > 

The third critical load of interest is the Euler elastic 

buckllnj load which can be obtained by putting k. = k in (1*0 or (15). 

_ kbc 
(16) 

i 

i 

The preceding discussion has implicitly assumed that P^. and 

therefore PK r.nd Pt* are above the yield force 2F , Fig. 12.  Should 

PT be loss than 2F , the initial imperfections may be small enough 

so that the material may not be made aware of the elastic deformation 

it could experience.  Nothing unusual will then happen at the tangent 
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modulus load. The obvious example Is a perfectly plastic or non-work- 

hardening manorial, kt = 0, for which PT = 0. In what follows, t'r ore- 

fcre, PT >2?y. 

A dynamic Investigation of the geometrically perfect model 

is more interesting than the vcll-explored static study.  As in the 

analysis of the first model, the consideration of a kinetic criterion 

of stability leads to investigation of the motion v/'nich follows 

arbitrary initial disturbances, and the question to be answered is 

whether or not the ensuing motion is United. The system has two 

degrees of freedom, one of motion of 0 vertically, y, and one of 

rotation, ©, and the arbitrary initial dynamic disturbm.ee will be 

characterized by y0, ©c where dot indicates time derivative. Tsis 

pair of values dct"ririrv':s the initial instantaneous center of rotation 

C and of course the initial angul-.r velocity of the rigid bnr DLfrR. 

If the x-coordinate of C is betv:een L and R, one supporting bar will 

start to unload and the other to load.  On the other hand, if the 

x-coordinat-- of C lies outside L to R both bars will start to l^ad or 
• 

unload depending upon the sign of °> . c 

Designating the kinetic energy of the system by T, for 

small displacements the change in kinetic energy is 

^2 
= T - T0 = P(y + h*L)   +  FL VL :lt + 

I 
I 
I 
I 

i 
f 

FR VR dt (17) 

where F and V are the instantaneous values of force and velocity at 

L and R.  Denoting the bar constants by kr and k^, each of which may 

be either k or k^., and considering the very beginning of the motion, 

first order terms cancel out and 

u   ., 
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The model therefore behaves like a linear elastic system at the begin- 

ning of the motion except that the non-conservative stress-strain 

relations determine the proper value of the k's. A decrease in kinetic 

energy, AT < 0, for all possible choices of y and 0 indicates thai the 

system is probably stable. An increase does not necessarily indicate 

true instability because even within the limitation of small deflection 

theory non-conservatism neans that (18) need not hold as the motion 

proceeds. 

If both support bars load, k^ = k~ = kt and y>2  ©• There- 

fore from (18), AT will bo negative (indicating stability) for 

P<PT = 
k4-b< _ *t For P> PT there will be a set of initial disturbances 

T   L 

for which the kinetic energy of the system will increase at the begin- 

ning of the motion. 

If 00 is positive and one support bar unloads while ere 

other increases its load, kL - kt, k~ = k, and y < * 0. With these 

1°) shows that AT will be negative for 

j'ho ! inetic energy of a disturbance of this type 

conditions Equation (1°) shows that AT will be negative for 
ktb

2 2k 
P<FK = L  EjTk * 
will not grow until the load exceeds the reduced modulus load.  What 

is of possibly greater significance here is that for P>PJC,AT>0 and 

the model will collapse because the k' s do not change as the motion 

proceeds. 

If the artifical case is chosen in which both bars unload 

initially, le = k_ = k and y < - ij£ . AT will be negative for 

P<P, .. kb£ 

I 

! 

Such slowing do;;n does not necessarily indicate 
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stability in this case.  Obviously, after reversing its motion, the 

system will collapse if P >PK. 

In general, therefore the complete motion of the system 

must be examined under all possible disturbances to understand the 

significance of the critical loads obtained. As illustrated in Fig.15 

becaune kj. is constant the motion settles down when PT ^ 
P
^
P
K 

whether AT is initially positive or negative.  With the usual curved 

stress-strain diagram it is clear that collapse would occur for P 

loss than PK by an amount depending upon the magnitude of the initial 

values 0o , y0. Nevertheless it is interesting and important tc note 

that all three critical loads, PT, PK, and Fp can be obtained from 

an analysis of a geometrically perfect system subjected to infinites- 

imal dynamic disturbance. 

i 



— •mi     ••.mil •afttAS i nn^»i 

i,»,--S£S*rc, V**' 

• 

All-92 

Initially 
imperfect 
column 

K+-8 

17. 

Large deflection 
theory 

Linearized theory 

FIG. I 

ELASTIC   STRUT 

Lorge deflection 
buckling theory 

Possftle 
curves for 
initial imperfection 

FIG. 2 

ELASTIC  SPHERICAL SHELL UNDER EXTERNAL 

HYDROSTATIC PRESSURE OR CYLINDER UNDER ENO COMPRESSION 
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